Post main image

Credit Card Fraud Detection System

Utilize various machine learning techniques to detect fraud.

The purpose of this project was to detect if fraud had been committed on a credit card using a sample taken over two days. EDA was conducted on the dataset to detect visually if any trends existed. Resampling of the dataset was also conducted to remedy its stark imbalance. Various traditional machine learning algorithms were then evaluated, along with deep neural networks, to decide on the most efficient and accurate model to predict fraud. It will be very helpful to whoever finds this interesting to take a look at the full report available at the Project website url above under 'Artificial Intelligence Capstone'.

Project screenshot 1
Project screenshot 2
Project screenshot 3
Project screenshot 4
Project screenshot 5
Project screenshot 6
Project screenshot 7
Project screenshot 8
Project screenshot 9
Project screenshot 10

Skip straight to final coding interviews with
Remote Companies!

CK Projects Rewards

1. Get feedback on your portfolio projects from fellow techies and makers.

2. Free 3 months subscription to Crash to pitch top companies.

3. Access Career Karma Hiring Assessment powered by Triplebyte to introduce top bootcamp students to remote friendly tech companies.

4. Portfolio Projects Masterclass Workshops.

Top Makers